Non-simultaneous Blow-up for a Semilinear Parabolic System with Nonlinear Memory

نویسندگان

  • Jun Zhou
  • M. A. Herrero
  • J. J. L. Velázquez
چکیده

In this note, we study the possibility of non-simultaneous blow-up for positive solutions to the following system,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow-up analysis for a semilinear parabolic equation with nonlinear memory and nonlocal nonlinear boundary condition

In this paper, we consider a semilinear parabolic equation ut = ∆u + u q ∫ t 0 u(x, s)ds, x ∈ Ω, t > 0 with nonlocal nonlinear boundary condition u|∂Ω×(0,+∞) = ∫ Ω φ(x, y)u (y, t)dy and nonnegative initial data, where p, q ≥ 0 and l > 0. The blow-up criteria and the blow-up rate are obtained.

متن کامل

Non–simultaneous Blow–up for a Semilinear Parabolic System with Localized Reaction Terms

In this paper, we study positive blow-up solutions of the semilinear parabolic system with localized reactions ut = Δu+ vr + up(0,t), vt = Δv + us + vq(0,t) in the ball B = {x ∈ R N : |x| < R} , under the homogeneous Dirichlet boundary condition. It is shown that nonsimultaneous blow-up may occur according to the value of p , q , r , and s ( p,q,r,s > 1). We also investigate blow-up rates of al...

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

A note on blow-up in parabolic equations with local and localized sources

‎This note deals with the systems of parabolic equations with local and localized sources involving $n$ components‎. ‎We obtained the exponent regions‎, ‎where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data‎. ‎It is proved that different initial data can lead to different blow-up phenomena even in the same ...

متن کامل

To The Memory of My Father ,

This thesis is concerned with the study of the Blow-up phenomena for parabolic problems, which can be defined in a basic way as the inability to continue the solutions up to or after a finite time, the so called blow-up time. Namely, we consider the blow-up location in space and its rate estimates, for special cases of the following types of problems: (i) Dirichlet problems for semilinear equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007